
Appendix: Reduction of computation times of Ne(·)s
(i) For α = a(κ)− b0(κ0),

α = (±1,±1, · · · ,±1)− (0, 1, · · · , 1) = (±1, α1, · · · , α2e−1),

where αi ∈ {0,−2}. Number of α is 22
e
.

(ii) For α = bi(κ)− b0(κ0) with i = 0 and κ ̸= κ0,

α = (0,±1, · · · ,±1)− (0, 1, · · · , 1) = (0, α1, · · · , α2e−1),

where αi ∈ {0,−2} and at least one of αi is not zero. Number of α is 22
e−1 − 1.

(iii) For α = bi(κ)− b0(κ0) with i ̸= 0,

α = (±1, · · · ± 1, 0,±1, · · · ,±1)− (0, 1, · · · , 1) = (±1, α1, · · · , αi−1,−1, αi+1, α2e−1),

where αi ∈ {0,−2}. Number of α is (2e − 1)(22
e−1).

Total number of Ne(α) is

22
e

+ 22
e−1 − 1 + (2e − 1)(22

e−1) = 22
e

(
1

2
2e + 1)− 1.

Lemma 1 Let n be an odd number.

fe(c, a1, · · · , an) = fe(−c, an, · · · , a1)

proof: By transposing and multiplying (−1)n+1,

(LHS) =

∣∣∣∣∣∣∣∣∣
c a1 · · · an

−an
. . . . . .

...
...

. . . . . . a1
−a1 · · · −an c

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
c −an · · · −a1

a1
. . . . . .

...
...

. . . . . . −an
an · · · a1 c

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
−c an · · · a1

−a1
. . . . . .

...
...

. . . . . . an
−an · · · −a1 −c

∣∣∣∣∣∣∣∣∣ = (RHS)

Corollary 1

Ne

(
{a(κ)− b0(κ0)|κ(0) = 1}

)
= Ne

(
{a(κ)− b0(κ0)|κ(0) = −1}

)
proof: We use Lamma 1 as c = 1. For any α ∈ {a(κ)− b0(κ0)|κ(0) = 1},

Ne(α) = fe(1, a1, · · · , a2e−1) = fe(−1, a2e−1, · · · , a1) = Ne(α
′),

where ai ∈ {0,−2}, i ∈ I0．This α′ belongs to {a(κ)− b0(κ0)|κ(0) = −1}.

Corollary 2 For any i ∈ I0,

Ne

(
{bi(κ)− b0(κ0)|κ(0) = 1}

)
= Ne

(
{b2e−i(κ)− b0(κ0)|κ(0) = −1}

)
proof: We use Lamma 1 as c = 1. For any α ∈ {bi(κ)− b0(κ0)|κ(0) = 1},

Ne(α) = fe(1, a1, · · · , ai−1, 1, ai+1, · · · , a2e−1)

= fe(−1, a2e−1, · · · , ai+1,−1, ai−1, · · · , a1)
= Ne(α

′),

where ai ∈ {0,−2}, i ∈ I0 ∩ Ii．This α′ belongs to {b2e−i(κ)− b0(κ0)|κ(0) = −1}.
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Remark 1 We can omit computations of Ne(α) when α0 = 1, which are half cases of (i) and
(iii).

Total number of α to be computed is reduced to

1

2
22

e

+ 22
e−1 − 1 +

1

2
(2e − 1)(22

e−1) = 22
e

(
1

4
2e +

3

4
)− 1.

Corollary 3 Let n be an odd number.

fe(0, a1, · · · , an) = fe(0, an, · · · , a1)

Remark 2 Wen can omit one computation of fe(0, a1, · · · , an) and fe(0, an, · · · , a1), which
appear in (ii).

Lemma 2 Let n be an odd number.

fe(a0, · · · , an) = fe(an, · · · , a0)

proof:

(LHS)
Lemma 1

= fe(−a0, an, · · · , a1) =

∣∣∣∣∣∣∣∣∣∣∣

−a0 an · · · a2 a1
−a1 −a0 an · · · a2

−a2 −a1
. . . . . .

...
...

. . . . . . −a0 an
−an · · · −a2 −a1 −a0

∣∣∣∣∣∣∣∣∣∣∣

= −

∣∣∣∣∣∣∣∣∣∣∣

an · · · a2 a1 −a0
−a0 an · · · a2 −a1

−a1
. . . . . .

... −a2
...

. . . −a0 an
...

−an−1 · · · −a1 −a0 −an

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

an · · · a2 a1 a0
−a0 an · · · a2 a1

−a1
. . . . . .

... a2
...

. . . −a0 an
...

−an−1 · · · −a1 −a0 an

∣∣∣∣∣∣∣∣∣∣∣
= (RHS)

Remark 3 For α ∈ {b2e−1(κ) − b0(κ0)|κ(0) = −1} in (iii), a0 = a2e−1(= −1) holds. We
therefore can omit one computation of fe(−1, a1, · · · , a2e−2,−1) and fe(−1, a2e−2, · · · , a1,−1).

Corollary 4 Let n be an odd number.
(i) fe(a1, · · · , an, 0) = fe(0, a1, · · · , an)
(ii) fe(a1, · · · , an, 0) = fe(an, · · · , a1, 0)

proof:

fe(a1, · · · , an, 0)
Lemma 2

= fe(0, an, · · · , a1)
∥ Cor. 3

fe(an, · · · , a1, 0)
Lemma 2

= fe(0, a1, · · · , an)

Corollary 5 We can omit all computations of N(α) if a2e−1 = 0 in (ii), that is, we omit
fe(0, a1, · · · , a2e−2, 0).
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proof. In (ii), for any α = (0, a1, · · · , a2e−1) in which a2e−1 = 0, there exists one index j such
that aj ̸= 0 and aj+1 = · · · = a2e−1 = 0. Then

fe(0, a1, · · · , aj, 0, · · · , 0, 0) = fe(0, 0, a1, · · · , aj, 0, · · · , 0) = · · · = fe(0, · · · , 0, 0, 0, a1, · · · , aj)

by virtue of Corollary 4.

In implementation, reduction by Remark 2, Remark 3 and Corollary 5 needs no-simple
program codes. So these reduction is not applied for e = 1, 2 (only Remark 1 is applied there.)
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